I uma Software

Java 1.8 (Java 8) Update

A VSI Just-In-Time Presentation ©

Camiel Vanderhoeven & Brett Cameron
OpenVMS Boot Camp 2016 — 10014b

26-SEP-2016

I uma Software

Java 1.8 (Java 8) Update

This information contains forward looking statements and
is provided solely for your convenience. While the information

herein is based on our current best estimates, such information is
subject to change without notice.

I Agenda

Java 8 port

Project outline
Project approach
Current status

Java 7 new features

Java 8 new features

I Java 8 Port : Project Outline

Joint HPE/VSI project
Java 1.8 for HPE and VSI OpenVMS (8.4+, |IAG4)

Starting point:

Java 1.6 port to OpenVMS
Java 1.8 port to HP-UX

Updating a number of Java applications as part of the
port: Tomcat, Axis2, Ant, Wsit, ...

Probably around 90% complete (depending on how
you measure)

Field test planned for calendar Q4 2016
Release planned for calendar Q1 2017

Java 8 Port : Project Outline

Large amount of work

HotSpot:
99% C++

2,836 source files in 58 directories
1,383,700 lines of code

15% of code is very CPU/OS specific
~2,500 code changes required

JDK:
83% Java

26,706 source files in 1,005 directories
6,576,132 lines of code

~1,200 code changes required

Java 8 Port : Project Outline

JDK

JRE

Java Language

Tools & Tool APIs

Deployment

User Interface Toolkits

Integration Libraries

Other base Libraries

Lang and Util Base Libs

Java Virtual Machine

Java Language

java javac javadoc jar javap jdeps Scripting
Security Monitoring JConsole VisualVM JMC JFR
JPDA JVM TI IDL RMI Java DB Deployment
Internationalization Web Services Troubleshooting
Java Web Start Applet / Java Plug-in
JavaFX
Swing Java 2D AWT Accessibility
Drag and Drop Input Methods Image I/O Print Service Sound
IDL JDBC JNDI RMI RMI-IIOP Scripting
Beans Security Serialization Extension Mechanism
JMX XML JAXP Networking Override Mechanism
JNI Date and Time Input/Output Internationalization
lang and util
Math Collections Ref Objects Regular Expressions
Logging Management Instrumentation Concurrency Utilities
Reflection Versioning Preferences API JAR Zip

Java HotSpot Client and Server VM

Java 8 Port : Project Outline

Scope of work:
Port : add VMS-specific functionality

Part merge from Java 6 code

Part new development

Java 6 was mixed 64-bit (HotSpot) / 32-bit (JDK)
Java 8 is pure 64-bit

Test and debug
Ad nauseam
Using real Java code: clojure, ActiveMQ, Tomcat, DaCapo, ...

Adapt Java-based applications we ship

Documentation

Java 8 Port : Project Approach

Porting approach:
Different “rounds”

Round 1: Linux exploration
Before even seeing the Oracle/HP code

Determine the minimum set of changes required to turn Linux
OpendDK Java 6 into Java 8

End product: insight in the Java codebase, list of possible code
changes to check for

Round 2: Applied insight

Selectively merge Java 6 code changes and add new code
changes based on the Linux-based exploration. Harder
changes left for later

End product: lots of “easy changes” out of the way

Java 8 Port : Project Approach

Porting approach:

Round 3: hack-a-thon / codefest
Debug-driven development
Finding and fixing bugs
Non-systematic, based on programmers’ instincts
End result: somewhat functional Java8, but crash-prone

This can’'t be good...

Iteration 1: SQRT(4.0) =
Iteration 2: SQRT(4.0) =

Iteration 10028: SQRT
Iteration 10029: SQRT
Iteration 10030: SQRT
Iteration 10031: SQRT
Iteration 10032: SQRT
Iteration 10033: SQRT

= 2.0
= 2.0
= 29.8562832991
= 29.8562832991
= 29.8562832991
= 29.8562832991

Java 8 Port : Project Approach

Porting approach:

Round 3: hack-a-thon / codefest
Debug-driven development
Finding and fixing bugs
Non-systematic, based on programmers’ instincts
End result: somewhat functional Java8, but crash-prone

Round 4: Systematic drudgery
Individually reviewing every single VMS-specific line of code in
the Java 6 and Java 8 code bases
Making reasoned corrections to the code
End result: functional Java8, but still with some omissions and
bugs

Java 8 Port : Project Approach

Porting approach:
Round 5: Debugging

Back to debugging, still some nasty bugs out there
Add more applications to the test mix to find more bugs
End result: nearly bug-free Java 8, but with some missing bits

Round 6: Filling in the blanks

Add VMS support to new Java features (like the re-coded
graphics system)
End result: field-test-ready Java8

After field test: probably another round of debugging

I Java 8 Port : Current Status

In the middle of round 5, debugging / round 6,
filling in the blanks

X-Windows / Motif integration

Most of it is working...

@ /manager X 4

@ | 10.10.116.196:8080/manager/status

" Apache

Software Foundation
http://www.apache.org/

c

Q Search

t Applications

HTML Manager Help

Server Status

Manager Help

Complete Server Statu

arse and prepare request S: Service F: Finishing R: Ready K: Keepalve

Tomcat Version JVM Version JVM Vendor 0S Name 0OS Version 0S Architecture Hostname IP Address
Apache Tomcat/8.5.4 1.8.0.03-vms-rc1 Oracle Corporation OpenVMS XEOV-B4N ia64 execl4 10.10.116.196
memory: 88.22 MB Total memory: 140.50 MB Max memory: 196.00 MB
Memory Pool Type Initial Total Maximum Used
PS Eden Space Heap memory 55.00 MB 28.50 MB 28.50 MB 27.02 MB (94%)
PS Old Gen Heap memory 147.00 MB 89.50 MB 147.00 MB 21.98 MB (14%)
PS Survivor Space Heap memory 9.00 MB 22.50 MB 22.50 MB 3.29 MB (14%)
Code Cache Non-heap memory 2.00 MB 3.12 MB 256.00 MB 3.03 MB (1%)
Metaspace Non-heap memory 0.00 MB 24.50 MB -0.00 MB 23.78 MB
jp-nio-8009"
threads: 200 Current thread count: 0 Current thread busy: 0 Keeped alive sockets count: 0
processing time: 0 ms Processing time: 0.0 s Request count: 0 Error count: 0 Bytes received: 0.00 MB Bytes sent: 0.00 MB
Stage Time B Sent B Recv Client (Forwarded) Client (Actual) VHost Request

Most of it is working...

Java 7 new features

Diamond Operator

Java 6:

Java 7:

Map<String, List<Trade>> trades = new

TreeMap<String, List<Trade>>

Strings in switch statement
Java 6: Series of if / else if statements

Java 7: switch statement with strings as case labels

Numeric literals with underscores

Java 6:
Java 7:

int million

int million

1000000 ;
1 000 _000;

();

Map<String, List<Trade>> trades = new Treemap<>

() ;

Java 7 new features

Automatic resource cleanup

Java 6:

Java 7:

try
FileOutputStream fos = new

FileOutputStream(“movies.txt”) ;
DataOutputStream dos = new DataOutputStream(fos) ;
dos.writeUTF (“Java 7 Block Buster”) ;
} catch(IOException e) {
e.printStackTrace() ;
} finally
dos.close () ;
fos.close () ;

}

try (FileOutputStream fos = new

FileOutputStream(“*movies.txt”) ;
DataOutputStream dos = new DataOutputStream(fos))

dos.writeUTF (“Java 7 Block Buster”) ;

} catch(IOException e) {
e.printStackTrace () ;
}

Java 7 new features

Multi-exception catch
Java 6: try {

} catch (ExceptionTypeA e)
e.printStackTrace() ;

} catch (ExceptionTypeB e)
e.printStackTrace() ;

}

Java 7: try {

} catch(ExceptionTypeA | ExceptionTypeB e) {
e.printStackTrace () ;
}

I Java 7 new features
New file system I/O (NIO 2.0)

More predictable across platforms
WatchService for file change notifications

Easy “Fork and Join” paralellization
Using ForkJoinPool and ForkJoinTask

Dynamic run-time function invocation
Not used by the Java language, but useful for
dynamically-typed languages running on the JVM.

Java 8 new features

Default method implementation in interface
Interface methods can now have a “default”
iImplementation
If a class implements two interfaces that both provide a
default implementation of the same method, the class
has to override this method

Java 8 new features

Functional interfaces and lambda expressions
Functional interface: interface with a single abstract

method
Java 7. Runnable r - new Runnable () {
@Override
public void run() {
System.out.println (*My Runnable”) ;
}
}i
Java 8. Rrumnable r = () -> {
System, out.println (*My Runnable”) ;
}
Or even: runnable r = () -> System.out.println (“*My Runnable”) ;

Java 8 new features

forEach function

Java 7: Iterator<Integer> it = myList.iterator();

while (it.hasNext()) {
Integer 1 = it.next();
System.out.println(i) ;

Java 8: myList.forEach(new Consumer<Integers () {

public void accept (Integer i)
System.out.println (i) ;
)

1) ;

Consumer is a functional interface, so with Lambda:
myList.forEach(i -> System.out.println(i)) ;

Java 8 new features
Stream API for Big Data

Parallel (or sequential) processing of collections

Stream<Integer> dataSet = myList.parallelStream() ;
Stream<Integer> underTen = myList.filter(i -> i<10);
underTen.forEach(i -> System.out.println(i));

New Time API

Standardized approach to using time and date on Java

Improvements in Collection, Concurrency, and 10
API’s

I Credits

Some Java 7 code examples taken from O'Reilly
Publishing / Madhusudhan Konda

